A Highly Active Ir/WO₃ Catalyst for the Selective Reduction of NO by CO in the Presence of O₂ or O₂ + SO₂

Masahide Shimokawabe,* Mihiro Niitsu, Hironori Inomata, Nobuhiro Iwasa, and Masahiko Arai Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628

(Received July 19, 2005; CL-050935)

Ir/WO₃ catalyst is highly active for the reduction of NO by CO even in the presence of either O_2 or $O_2 + SO_2$. However, the activity of Ir/WO₃ is fairly lowered by the presence of SO₂ alone. It is believed that the active sites lose their activity by the adsorption of SO₂ but O₂ promotes the desorption of SO₂ from these sites as suggested by TPD, thus the negative effect of SO₂ being suppressed by the coexistence of O₂.

The selective catalytic reduction of NO in oxygen-rich atmosphere has recently attracted extensive attention for removing NOx emitted from diesel and lean-burn engines. Under lean conditions, certain hydrocarbons have been proved to act as selective reductants, $^{1\!-\!3}$ while CO and H_2 have not been regarded as selective reductant since they are oxidized by O₂ rather than by NO. Furthermore, the catalysts are often deteriorated by the presence of SO₂ in diesel exhaust. Recently, it has been reported that Ir supported on silicate⁴ and ZSM-5^{5,6} can catalyze NO reduction by CO even in the presence of excess oxygen. Hamada et al.⁷⁻⁹ have reported that Ir/SiO₂ showed no NO reduction activity in the absence of SO_2 , while the presence of SO_2 drastically promotes NO reduction. This is quite a favorable characteristic for the treatment of diesel exhaust. Previously, the authors have studied the catalytic reduction of NO with CO in the presence of excess O₂ over various supported metal catalysts.¹⁰ The pronounced activity was obtained with Ir/WO3, Ir/ZnO, and Rh/ Al₂O₃ catalysts, among which the first one is the most active. In the present study, the influence of SO_2 on the reduction of NO has further been investigated for the Ir/WO₃ catalyst.

Ir/WO₃ was prepared by an impregnation method. WO₃ support was prepared by a decomposition of $(NH_4)_{10}W_{12}O_{41} \cdot 5H_2O$ in air at 773 K for 3 h. WO₃ was impregnated with aqueous solution of H₂IrCl₆ in a rotary evaporator at 343 K. The catalyst was further calcined in air at 773 K for 2 h. Ir loading was 5.0 wt %.

The reaction was carried out in a conventional flow reactor at W/F of 0.06 g s cm⁻³ and at 423–673 K. The reactor was made of 6 mm diameter Pyrex glass tubing in which the catalyst sample of 0.05 g was mounted on loosely packed quartz wool. Prior to the runs, the catalyst was treated in a stream of He at 773 K for 3 h and cooled to the reaction temperature. The reactant gases used were NO (1000 ppm), CO (1%) and O₂ (0–8%) and they were diluted with He. In order to investigate an effect of SO₂, 100 ppm of SO₂ was added to the reactant gas in the transient mode. Unless otherwise stated, all the experiments were carried out using 2% O₂. The concentrations of N₂, N₂O, O₂, CO, and CO₂ in the outflow gas were determined using gas chromatographs (Shimadzu 8A and 6A) with porapak Q and molecular sieve 5A columns. The concentration of NO₂ was monitored using a UV–vis spectrophotometer (Hitachi Model U-1100). TPD experiments of SO₂ adsorbed on Ir/WO₃ and WO₃ were carried out to investigate the desorption behavior of SO₂, using a BEL Japan, Inc., TPD-1-AT detected by Q-MASS detector.

The reactions were run at temperatures of 473-673 K and the reactions were slow at 523 K or below under the conditions used. Table 1 summarizes the values of conversion of NO to N₂ or N₂O, and CO over Ir/WO₃ measured at higher temperatures. The pronounced activity more than 60% NO conversion is observed above 573 K except in the presence of SO₂. The highest value of NO conversion is observed in the reaction of NO-CO without both O₂ and SO₂. CO conversion obtained in the presence of O_2 or $O_2 + SO_2$ reaches to 100% since the oxidation of CO proceeds very rapidly in the presence of excess O₂. It may be a reason for that the conversion of NO (to N_2 and N2O) is saturated around 60% above 623 K in the presence of excess O2. It is found that SO2 remarkably inhibits the NO-CO reaction, while this reaction is not inhibited by the presence of O₂ or $SO_2 + O_2$. The values of total NO conversion for NO-CO-O₂ reaction in the presence and absence of SO₂ obtained at 573-673 K are almost identical, while the selectivity values for N₂ and N2O are different. The selectivity for N2O increases but that for N₂ decreases to almost the same extent by introducing SO₂. Namely, the coexisting O_2 was able to mask the negative effect of SO₂. Possible mechanisms for the formation of N₂ and N₂O from NO is considered to be the recombination of N atoms adsorbed on adjacent Ir sites $(2N_{(a)} \rightarrow N_2)$ and the reaction of an adsorbed N atom and an adsorbed (or gaseous) NO molecule, respectively. Introducing SO₂, which is adsorbed on Ir sites as proved by TPD (Figure 2), would reduce the couples of the adjacent N atoms, thus decreasing the conversion to N2 but increas-

Table 1. The conversion^a to N_2 and N_2O and of CO in the reaction of NO and CO in the presence and absence of O_2 and/or SO_2 with a 5 wt % Ir/WO_3

Temperature ^b	NO + CO			NC	$NO + CO + O_2$			$NO + CO + SO_2$				$NO + CO + O_2 + SO_2$			
/K	N_2	N_2O	СО	N_2	N_2O	CO		N_2	N_2O	CO	_	N_2	N_2O	СО	
573	74	7	8	66	15	100		7	6	1		41	42	100	
623	80	4	12	53	8	100		10	7	3		49	22	100	
673	87	0	11	55	4	100		8	9	4		50	9	100	

^aIn %. Conversion to N_2 (or N_2O) = (N_2 (or N_2O) at outlet)/(NO at inlet); conversion of CO = (CO₂ at outlet)/(CO at inlet) in the absence or presence of O₂. ^bReaction temperature.

Figure 1. The relationship between O_2 concentration and the

conversions of NO and CO in the reaction between NO and CO over Ir/WO_3 at 573 K in the presence and absence of SO₂.

ing the conversion to N₂O.

Figure 1 shows the relationship between the O₂ concentration and the conversion of NO to N2 and N2O in the presence and absence of SO_2 . The conversion to N_2 obtained in the NO-CO reaction without O₂ decrease drastically by introducing SO_2 . When the reaction is carried out in the presence of O_2 between 0.3 and 1%, the conversion to N_2 increases up to 80% while the conversion to N_2O shows less than 15%. When SO_2 is introduced in the NO-CO reaction in the presence of O₂ between 0.3 and 1%, the conversion to N_2 decreases and that to N₂O increases inversely. It is found that the maximum conversion of NO in the absence of SO2 is obtained at an O2 concentration around 0.5%. When NO and CO are completely converted to N₂ and CO₂, respectively, according to an equation, $NO + 10CO + 9/2O_2 \rightarrow 1/2N_2 + 10CO_2, 0.45\% O_2$ is the stoichiometric concentration under the present conditions (0.1%)NO and 1% CO), which is close to the O_2 concentration for the maximum NO conversion observed. When more than 0.45% O₂ is added, the oxidation of CO may be promoted but this may decrease the NO reduction by CO. Certainly, when the reaction is carried out in the presence of O_2 above 1%, CO conversion steadily shows 100% and conversion to N2 decreases with increase in O₂ concentration, while conversion to N₂O increases inversely. The conversion to N₂O is further increased by introducing SO₂. As well known in the literature, $^{1-4}$ 6–16% O₂ and 1-500 ppm SO₂ are usually contained in diesel exhaust. It is seen that Ir/WO₃ catalyst shows still high activity even in excess O₂ atmosphere, for example, 70% NO conversion for 5% O_2 . It could be considered that the resistance of Ir/WO_3 to oxidation is very useful for SCR in oxygen-rich atmosphere.

Figure 2 illustrates the TPD curves of SO₂ adsorbed on WO₃ and Ir/WO₃. For SO₂ adsorption, the samples were exposed to a stream of 1% SO₂ diluted with He at 50 cm³ min⁻¹ for 60 min at room temperature. They were flushed by flowing He for 60 min and heated in pure He (50 cm³ min⁻¹) at a rate of 10 K min⁻¹ (curves 1 and 2) or by flowing pure He for 45 min and further

Figure 2. TPD curves of SO_2 adsorbed on WO_3 and Ir/WO_3 collected during heating in pure He (1 and 2) and in O_2 (2%) and He (3).

by 2% O_2 + He for 15 min, followed by TPD in the same O_2 + He stream (curve 3). A broad desorption peak is observed around 350 K for the support alone (curve 1). For curve (2), two peaks are seen around 350 and 650 K, which may correspond to desorption of SO₂ adsorbed on WO₃ and Ir species, respectively. When TPD was conducted in the presence of O_2 , a different result was obtained (curve 3); the peak assigned to the desorption from Ir shifts to lower temperature by about 60 K. Namely O_2 can promote the desorption of SO₂ from surface Ir sites and this is a reason for O_2 to remove the negative effect of SO₂ deactivating those sites.

The influence of O_2 and SO_2 on the catalytic reduction of NO with CO has been investigated for an Ir/WO₃ catalyst, which is highly active for this reduction in the absence of those foreign gases. It is shown that NO can be reduced by CO even in the presence of either O_2 or $O_2 + SO_2$. It is also seen that the catalyst shows high activity even in excess O_2 atmosphere such as 5 to 8% O_2 in the presence and absence of SO₂. It could be considered that the resistance of Ir/WO₃ to oxidation is very useful for sulfur free lean-burn engines in addition to diesel exhaust.

References

- 1 Y. Li and J. N. Armor, Appl. Catal., B, 1, L31 (1992).
- 2 M. Iwamato and H. Hamada, Catal. Today, 10, 57 (1991).
- 3 X. Feng and W. K. Hall, J. Catal., 166, 368 (1997).
- 4 M. Ogura, A. Kawamura, M. Matsukata, and E. Kikuchi, *Chem. Lett.*, **2000**, 146.
- 5 A. Wang, D. Liang, C. Xu, X. Sun, and T. Zhang, *Appl. Catal.*, B, **32**, 205 (2001).
- 6 A. Wang, L. Ma, Y. Cong, T. Zhang, and D. Liang, *Appl. Catal.*, *B*, 40, 319 (2003).
- 7 T. Yoshinari, K. Sato, M. Haneda, Y. Kintaichi, and H. Hamada, *Catal. Commun.*, **2**, 155 (2001).
- 8 T. Yoshinari, K. Sato, M. Haneda, Y. Kintaichi, and H. Hamada, *Appl. Catal.*, *B*, **41**, 157 (2003).
- 9 M. Haneda, Pusparatu, Y. Kintaichi, I. Nakamura, M. Sasaki, T. Fujitani, and H. Hamada, J. Catal., 229, 197 (2005).
- 10 M. Shimokawabe and N. Umeda, Chem. Lett., 33, 534 (2004).